

PHYS 102 -Engineering Physics II										
Course Code Course Name Semester										
PHYS 102	Fall 🗆 Spring 🛛 Summer 🗆									
	Hours									
Theory	Practice	Lab	1	c						
3	0	2	4	0						

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	2/5

- Physics for Scientist Engineers 10th addition by John W. Jewett Jr. and Raymond Serway, Cancage.
- Physics for Scientists and Engineers with Modern Physics by Giancolli. Peaeson.
- Fundamentals of physics by Halliday and Resnick, 9th addition. John Wiley & Sons.

Course Category										
Mathematics and Basic Sciences	\boxtimes	Education								
Engineering	\boxtimes	Science	\boxtimes							
Engineering Design		Health								
Social Sciences		Profession								

Wee	Weekly Schedule								
No	Topics	Materials/Notes							
1	Electric Charge, Coulomb's law and Electric Field	Chapter 21							
2	Electric Charge, Coulomb's law and Electric Field	Chapter 21							
3	Gauss's Law	Chapter 22							
4	Electrostatic Potential	Chapter 23							
5	Capacitance, Dielectrics, and Electric Energy Storage	Chapter 24							
6	Electric Currents and Resistance	Chapter 25							
7	EMF, Terminal Voltage, DC Circuits, and Kirchhoff's Rules	Chapter 26							
8	Midterm Exam								
9	Magnetism and Magnetic Fields	Chapter 27							
10	Magnetism and Magnetic Fields	Chapter 27							
11	Sources of Magnetic Field, Ampere's Law, Biot-Savart Law	Chapter 28							
12	Electromagnetic Induction, Faraday's Law, Lenz's Law	Chapter 29							
13	Inductance, Electromagnetic Oscillations, and AC Circuits	Chapter 30							
14	Inductance, Electromagnetic Oscillations, and AC Circuits	Chapter 30							
15	Maxwell's Equations and Electromagnetic Waves	Chapter 31							
16	Final Exam								

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	3 / 5

Assessment Methods and Criteria										
In-term studies	Quantity	Percentage								
Attendance										
Lab		15%								
Practice										
Fieldwork										
Course-specific internship										
Quiz/Studio/Criticize										
Homework										
Presentation / Seminar										
Project										
Report										
Seminar										
Midterm Exam	1	35%								
Final Exam	1	50%								
	Total	100%								
Contribution of Midterm Studies to Success Grade										
Contribution of End of Semester Studies										
to Success Grade										
	Total	100%								

ECTS Allocated Based on Student Workload								
Activities	Total Workload							
Course Hours	14	3	42					
Lab	14	2	28					
Practice								
Fieldwork								
Course-specific Work Placement								
Out-of-class study time	14	2	28					
Quiz/Studio/Criticize								
Homework								
Presentation / Seminar								
5Project								
Report	8	3	24					
Midterm Exam and Preparation for Midterm	1	10	10					
Final Exam and Preparation for Final Exam	20							
Total Workload	152							
Total Workload / 25	6.08							
ECTS Credit 6								

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	4 / 5

Course Lea	arning Outcomes
No	Outcome
L1	Demonstrate a conceptual understanding of the fundamental physical laws of electricity and magnetism
L2	Realize importance of physics and the scientific method for advancement of technology and human life.
L3	Analyze problems using the laws of electromagnetism
L4	Gain knowledge and skills for modeling and solving variety of physics and engineering problems
L5	Perform experiments, make measurements, analyze data and make calculations to reach meaningful results, present such activities as a scientific report.

Contribution of Course Learning Outcomes to Program Competencies/Outcomes														
Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant														
	<mark>P1</mark>	<mark>P2</mark>	P3	P4	P5	P6	P7	<mark>P8</mark>	P9	<mark>P10</mark>	P11			Total
L1	×	×				×	×	×	×					-
L2	×	×				×	×	×	×					-
L3	×	×				×	×	×	×					-
L4	×	×		×	×	×	×	×	×					-
L5	×	×	x	×	×	×	×	×	×		×			-
Total										-				

- i. Adequate knowledge in mathematics, science, and subjects specific to Computer Engineering; ability to use theoretical and applied knowledge in these areas to solve complex engineering problems.
- ii. Ability to identify, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
- iii. Ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; ability to apply modern design methods for this purpose.
- iv. Ability to develop, select, and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering practice; ability to use information technologies effectively.
- v. Ability to design and conduct experiments, collect data, analyze and interpret results in order to investigate complex engineering problems or research topics specific to the discipline of Computer Engineering.
- vi. Ability to work effectively in disciplinary and multidisciplinary teams; ability to work individually.

- vii. Ability to communicate effectively in oral and written Turkish; knowledge of at least one foreign language; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
- viii. Awareness of the necessity of lifelong learning; the ability to access information, to follow developments in science and technology and to continuously renew oneself.
- ix. Acting in accordance with ethical principles, professional and ethical responsibility awareness; knowledge of standards used in engineering applications.
- x. Knowledge about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation; knowledge about sustainable development.
- xi. Knowledge about the effects of engineering applications on health, environment, and safety in universal and social aspects and the problems of the age reflected in the field of engineering; awareness of the legal implications of engineering solutions.